
Mathematical Modelling and Analysis I 
Coursework 2 

 
MODEL 1: 
 
(a) Deriving a mathematical model for the amount of pollutant in the lake as a function of 

time i.e., y(t)  
 
We must find the input and output rates of pollutant. 
 
Input rate is obtained as the product of the concentration of pollutant and the rate of 
flow of water 
 
Input Rate = ci ri  
 
For the output rate we must first find the concentration of pollutant of outflow which is 
the same as the concentration of pollutant. 
 
Using the relation 
Concentration (density) = Mass/Volume 
We get, 
Outflow concentration (co) = y(t)/V(t) 
 
Output Rate = y(t).ro / V(t)  
 
However, in order to simplify calculation, we will assume the volume to be constant so  
V(t) = V  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The ODE “dv/dt = ri – ro” shows how the lakes volume changes with respect to time. 
This may lead to three outcomes  

1) If ri > ro the lakes volume increases linearly with time  
2) If ri = ro the volume remains constant with time  
3) If ri < ro the volume decreases linearly with time 

Since these cases all depend on various factors, we are not aware of such as the size 
of the outlet, its orientation etc. we are forced to assume one of these outcomes is 
true. For the simplification of calculations, we can assume case 2) that is the volume 
of the lake remains constant with time i.e., ri = ro and V(t) = V => constant 



Now, change in amount of pollutant is given by 
 
dy/dt = input rate – output rate 
ð dy/dt = ci ri – y(t).ro / V  
ð dy/dt + y(t).ro / V = ci ri               ....(ODE 1) 
 
Solving the above differential equation using integrating factor (IF) method 
Because it is of the form  
 
dy/dt + y. P(t) = Q(t) 
 
Where, P(t) = r0 / V, Q(t) = ci ri       
 
IF = e∫P(t) dt 

ð IF = e∫
!"
# 	#$  

ð 𝐈𝐅 = 	𝐞
𝐫𝐨
𝐕 𝐭                                                    (ro / V is a constant term) 

 
Now multiplying (ODE 1) by IF 

ð dy/dt . (e
!"
# $ ) + y(t).ro (e

!"
# $ ) / V = ci ri (e

!"
# $ )               

ð #
#$

 ( y(t) . e
!"
# $ ) = ci ri (e

!"
# $ )  

Integrating both sides  
ð y(t) e

!"
# $  =  ∫ ( ciri . e

!"
# $ ) dt   + K                (where K is the constant of integration) 

ð y(t) e
!"
# $  =  ciri ∫  e

!"
# $ dt   + K                     (ciri is a constant term) 

ð y(t) e
!"
# $  =  ciri [ (V/ro).  e

!"
# $ ] + K              ( ∫ex dx = ex 

  ,   ro / V is a constant term so we     
                                                                           divide by it after integrating)                 

ð y(t) e
!"
# $  =  ciri [ (V/ri). e

!"
# $ ] + K              (from assumption we have ri = ro)     

ð y(t) e
!"
# $  =  ciV.  e

!"
# $    + K     

ð y(t) = ciV + K/e
!"
# $                                      (divide equation by e

!"
# $ )  

ð y(t) = ciV + K/e
!"
# $    

ð y(t) = K.𝐞
'𝐫𝐨
𝐕 𝐭 + ciV                                                   ...... (i) 

 
We know that at t = 0, y(t) = 0 
Plugging these values into eq (i) we get  
K = - ciV 
 

ð y(t) = ciV - ciV. e
'!"
# $  

 

ð y(t) = ciV (1 – 𝐞
'𝐫𝐨
𝐕 𝐭) g                                                  ...... (ii) 

 
 

 

Using product rule of differentiation, we 
have: 
(
()

 U.V = V.(*
()

 + U.(+
()

 



DIMENSIONAL CONSISTENCY OF THE MODEL 
 
For y(t)  
It is the amount of pollutant in the lake and is measured in g so has the dimensions [M] 
 
For ci 
It is concentration of pollutant and is measured in g/m3 so has dimensions [M L-3] 
 
For V 
It is volume so has dimensions [L3]  
 

For (1-𝐞
'𝐫𝐨
𝐕 𝐭) 

1 is a constant so is dimensionless and all exponential functions are also always 
dimensionless, so this term has no dimensions 

 
 
 
 
 
 
LHS = RHS 
Thus, this model is dimensionally correct. 

     
 
(b) Using the equation (ii) from (a) we derive an expression for the time varying with 

concentration  
 
We have, 

y(t) = ciV (1- e
'!"
# $) 

ð y(t)/ciV = (1- e
'!"
# $) 

ð e
'!"
# $ = 1 – (y(t)/ciV) 

Taking logarithm of both sides 

ð ln( e
'!"
# $) = ln(1 – (y(t)/ciV))                            (ln(ex) = x) 

ð -r0 t/ V = ln(1 – (y(t)/ciV)) 

ð t = &𝐕
𝐫𝐨

 ln(1 – (y(t)/ciV)) hours                                      ...... (iii) 

 

We are given that the lake will be irreversibly damaged when its concentration reaches 
331 g m-3  
In order to find the time of irreversible damage we should estimate the values of the 
constants V, ri , ro and ci 

Considering a case study of Lake Pichola in Rajasthan, India  

LHS: 
y(t) 

ð [M] 

RHS: 

ciV (1- e
'!"
# $) 

ð [M L-3].[L3] 
ð [M] 

 



We get  
V = 13.08 x 106 m3       [1] 
ri = ro = 45000 m3/h 
In order to ensure that ci is of similar order of cx we assume, 
ci = 450 g/m3 
Also we write y(t)/V = co                 (concentration of outflow) 
 

      So, the equation (ii) becomes  

co = ci (1 – e
'!"
# $)                                             .......(iv)          

And, the equation (iii) becomes  

t = &)
*"

 ln(1 – (c0/ci))                             ......(v)                           

 
For the irreversible damage it is given that the outflow concentration must be 331 g/m3 
Let this be called the critical concentration represented by cx 
cx = 331 g/m3 

 

We plug the assumed values into equation (v) where cx replaces co  

On solving through MatLab we get the value of t   [APPENDIX 1] 

 
t = 386.6227 hours 
 
We graph equation (iv) using Matlab and plot the value of ‘t’ obtained on it to get the 
resultant graph [APPENDIX 2] 
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(c) First, we start by calculating he steady state concentration of the lake given by 
 

lim
$→,

y	(t)
V  

We have y(t) = ciV (1 - e
'!"
# $) 

ð y(t) / V = ci - ci e
'!"
# $ 

ð lim
$→,

-	($)
)

 = lim
$→,

(c0 	− 	c0	e
'!"
# $) 

ð lim
$→,

-	($)
)

 = lim
$→,

c0 - lim$→, c0	e
'!"
# $ 

 
 
 
 
 
 
 
 

ð lim
$→,

-	($)
)

 = lim
$→,

c0 
 

We have chosen ci to be a constant with ci = 450 g/m3   

ð lim
$→,

-	($)
)

 = ci  

ð lim
$→,

-	($)
)

 = 450        (this is the steady state concentration) 

 
 

It is given that at time τ, concentration reaches 95% of steady state concentration  
Thus, at t = τ, cL (τ) = 95% of 450 
ð cL (τ)  = 427.5 g/m3   
 
We have from equation (v) 
t = &)

*"
 ln(1 –(c0/ci))         

ð  τ = &)
*"

 ln(1 – (cL (τ) /ci))                            

Using values of V, ro and ci as specified in (b) [APPENDIX 3] 

ð τ = &12.45	6	14
,

78444
 ln(1 – (427.5 /450))          

 
ð τ = 870.760 hours                 

 
 

 
 
 
 
 
 

Calculating lim
$→,

c0	e
'!"
# $ 

ð ci lim
$→,

	e
'!"
# $ 

We know that  lim
6→,

	e&6 = 0	
ð 0 



GRAPH SHOWING TIME τ AND REGION OF STEADY STATE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
In the above plot showing a plot of concentration of pollutants in the lake with 
respect to time, we can observe that the graph becomes a line parallel to the x axis 
when it approaches the concentration 450 g/m3. Thus, the region of steady state 
concentration is the region of time = ∞ i.e., the horizontal asymptote of the graph. 
 
A steady state regime is when the concentration of pollutants in the lake reaches a 
point where it stops changing and becomes constant. This is a state wherein the 
concentration of pollutants in the lake reaches equilibrium. However, since this is 
only a hypothetical situation as it’s a horizontal asymptote so it never really reaches 
steady state, the steady state regime can be defined as a state of hypothetical 
equilibrium of concentration. 
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Since we assumed the volume of the lake to be constant, we need to consider the effect 
of the changing values of inflow and outflow into the lake, on the concentration of 
pollutant in the lake. 
 
The change in volume of the lake is defined as follows: 
dV/dt = ri – r0 

ð dV = (ri – r0) dt 
 
To determine V(t) we integrate this equation:  
∫dV = ∫(ri – r0) dt 
ð V = (ri – r0) t + K  m3               (K = constant of integration) 

 
However, at t = 0 the Volume in the lake is constant say V = Vo  

ð K = Vo 
ð V(t) = (ri – r0) t + Vo     m3

    
 
The effect of inflow and outflow into the lake can be studied by considering two main 
cases 

 
When ri >> ro   

ð (ri – r0) t > 0 
ð V(t) increases with time 
In the case where the inflow of pollutants into the lake is significantly more than the 
outflow, i.e., the lakes volume increase with time, the concentration of the lake reaches 
steady state at a slower rate. This is due to the fact that the mass of pollutant in the inflow 
is lower than the volume of the lake making the concentration of pollutant in the lake low. 
Also, the volume of the lake progressively increases with time which is another factor that 
contributes to the fact that in this situation it will take more time to reach steady state 
concentration. 

 
When ri << ro   
ð (ri – r0) t < 0 
ð V(t) decreases with time 
In the case where the outflow of pollutants into the lake is significantly more than the 
inflow, i.e., the lakes volume decreases with time, the concentration of the lake reaches 
steady state at a faster rate. This is due to the fact that as pollutant inflows into the lake, 
the pure water flows out of the lake at a faster rate. Also the volume of the lake 
progressively decreases with time which is another factor that contributes to the fact that 
in this situation it will take less time to reach steady state concentration. 
 
It can be observed that in the above to cases as well as the case of constant volume, the 
concentration of the lake does eventually reach steady state concentration. The only 
factor that varies is the time that it takes to reach that concentration. 
 
Also, this model cannot completely be relied on as the volume also changes due to other 
environmental factors such as leakage of lake water into the soil, evaporation, rain etc. 

 



(d) In order for the lake to clear out, we need to determine a model so that it reaches a 
pollutant concentration less than 5 g/m3 after the inflow of pollutant into the lake has 
stopped. 
 
From (a) it was determined that the change in amount of pollutant is given by 
ð dy/dt = ci ri – y(t).ro / V  

 
However, since the inflow into the lake has stopped we have ci ri = 0 
ð dy/dt = – y(t).ro / V  
ð dy/dt + y(t).ro / V = 0                ....(ODE 2) 

 
 
Solving the above differential equation using integrating factor (IF) method 
Because it is of the form  
 
dy/dt + y. P(t) = Q(t) 
 
Where, P(t) = r0 / V, Q(t) = 0       
 
IF = e∫P(t) dt 

ð IF = e∫
!"
# 	#$  

ð 𝐈𝐅 = 	𝐞
𝐫𝐨
𝐕 𝐭                                                    (ro / V is a constant term) 

 
Now multiplying (ODE 2) by IF 

ð dy/dt . (e
!"
# $) + y(t).ro . (e

!"
# $)/ V = 0                 

ð #
#$

 ( y(t) . e
!"
# $ ) = 0 

ð d ( y(t) . e
!"
# $ ) = 0.dt 

Integrating both sides  

ð y(t) . e
!"
# $  = ∫ 0.dt 

ð y(t) . e
!"
# $  = K                                            (where K is the constant of integration) 

ð y(t) = K . e
'!"
# $                                        ....(vi) 

 
We know that at t = 0 (i.e., the time when inflow of pollutant stops), we know that the 
concentration of pollutant in the lake, i.e., y(t)/V = 213 g/m3 
Plugging these values in equation (vi) 
K = 213 . V 

 
ð y(t) = 213.V. 𝐞

'𝐫𝐨
𝐕 𝐭  g                          ....(vii) 

 
 

Now, using equation (vii) in order to find an expression for time ‘t’ 
Rearranging equation (vii) we have 
 

Using product rule of differentiation, we 
have: 
(
()

 U.V = V.(*
()

 + U.(+
()

 



y(t) / (213.V) = e
'!"
# $     

 
Taking logarithm of both sides we have 
 
ð ln (y(t) / (213.V)) = - ro t / V                        (ln(ex) = x)                               

 
ð t = &𝐕

𝐫𝐨
 ln (y(t) / (213.V))                            ...(viii) 

 
Since we need to find the time when the concentration of the lake reached 5 g/m3 
Thus, y(t)/V =  5 g/m3 

 
Replacing this value of y(t)/V and the values of V and ro chosen in (b) in equation (viii) we 
get the time required to reach concentration of 5 g/m3      [APPENDIX 4] 
 
ð t = 1090.5 hours 
 
In order for the lake to be considered cleared the concentration should be less the 5 
g/m3 so we increase this time t by a little amount and plug it into the equation [(vii)/V] in 
order to get a value just below 5 g/m3 
 
Using MatLab we get [APPENDIX 5] 

 
ð t = 1090.55 hours 

 
We check the accuracy of this solution for time by plugging in this value for time back 
into equation [(vii)/V] 
 
We get y(t)/V = 4.9998 g/m3 
 
This is demonstrated in the following graph on the next page 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

GRAPH REPRESENTING CLEARING OF LAKE  
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MODEL 2: 
 
(a) We are given the decay rate of the levels of C14 by the equation 

d	[C17]
dt = −r	[C17] 

                                       Rearranging this equation, we get 
d	[C17]
[C17] = −r	dt 

                                    Now we integrate the equation on both the sides 

;
d	[C17]
[C17] = −r	;dt 

                                                        
ð ln [C14] = -rt + K                      ..... (i)                              (where K = constant of integration)                

 
 
 
 
 
 
 
 
 

Replacing value of K in eq (i) 
ð ln [C14] = -rt + ln [C14]0 
ð rt = ln [C14]0 - ln [C14]   
ð rt = ln ([C14]0 / [C14]) 

 

ð r = 𝟏
𝐭
 ln 

:𝐂𝟏𝟒<𝟎	

[𝐂𝟏𝟒]
 year-1                   ....(ii) 

 
 
We are given that the concentration is halved of the initial when t = 5730 years 
Thus, under this condition, [C14] = 0.5 [C14]0  

We plug these values of t and [C14] in equation (ii) 
 

ð r = 1
8?24

 ln 
:@01<2	

4.8	[@01]2
 

ð r = ln 2 / 5730 
 

ð r = 1.2097 x 10-4  year-1 
 
 
 
 
 
 

Finding the constant of integration K: 
We consider the initial condition 
We are given at t = 0, [C14] = [C14]0 

We plug in these values of t and [C14] in eq (i) 
ð ln [C14]0 = -r(0) + K 
ð K = ln [C14]0 

Using  ∫ #6
6
= ln x 



(b) We are given a relation 
M = [C14]/[C12]          ....(iii)                            (where [C12] is a constant) 
 
Now we differentiate equation (iii) with respect to ‘t’ 
 

ð #A
#$	
=	 #

#$
>:@

01<
[@03]

? 

ð #A
#$	
=	 1

[@03]
#:@01<
#$

     ....(iv)                        (because [C12] is a constant) 

 
We have also been given 

d	[C17]
dt = −r	[C17] 

 
so, we replace the value of d[C14]/dt in equation (iv) 
ð #A

#$	
=	 1

[@03]
(-r [C14]) 

ð #A
#$	
= −r>:@

01<
[@03]

? 

ð #A
#$	
=	-r M                                                 (using equation (iii)) 

 
Rearranging the equation 

ð #A
A

 = - r dt 
 
Integrating both sides of the equation 

ð ∫ #A
A

 = - r ∫dt                                            (r is a constant term) 
ð ln M = -r t + K               ....(v) 
 
 
 
 
 
 
 
 
Replacing Value of K in equation (v) 
 
ð ln M = -r t 

 
Taking the exponential of both sides of the equation  
 

ð M = e-rt                           ....(vi)                      (eln(x) = x) 
 
 

Using  ∫ #6
6
= ln x 

Finding the constant of integration K: 
We consider the initial condition 
We are given at t = 0, M = 1 

We plug in these values of t and M in equation (v) 
ð ln (1) = -r (0) + K 
ð K = 0                                          (ln (1) = 0) 



 (c) We are given a data containing five measurements of M. Using that data we first                                                                                           
h.   calculate the mean and standard deviation of the data. 

  
We have N = Sample size = 5, and Xi = different values of M from the sample 
 
In order to calculate the mean we use the expression 
XA = 1

B
Σ(Xi) 

 
ð XA	=	0.0149     [APPENDIX 6]   

 
Using an unbiased estimate for the true variance of X, the sample variance is given by 
Var(X)	≈		σ2 = 1

B&1
[	F	∑ X0B

0C1 H − NXAD]     [APPENDIX 7]   
 
The standard deviation of the sample is given by 

SD(XA) =	JE3

B
 

 
ð SD(XA) = 8.9028 x 10-4     [APPENDIX 8]   

 
 

We calculate the 95% (1-α) confidence interval (x1 , x2) such that 
P(x1< XA ≤ x2) = 0.95 
 
Because of the symmetry of the standard normal distribution around 0 
ð x1 = -x2 = Φ-1 (1 – α/2) 
where Φ-1(x) is the inverse of the normal cumulative distributed function 
 
By standardizing the random variable XA we get a (1-α) confidence interval expressed as 

[ XA – Φ-1 (1 – α/2)
FG4'0

3

√B
	,	XA +Φ-1 (1 – α/2)

FG4'0
3

√B
	] 

 
Calculating in MatLab using (norminv) function we get     [APPENDIX 9]    

 
ð Φ-1 (1 – 0.05/2) = 1.96 

 
Now we calculate 

[ XA – (1.96)
FG4'0

3

√B
	,	XA +  (1.96)

FG4'0
3

√B
	]	

ð [ 0.0167, 0.0132] 
 
This is the 95% confidence interval of M 
 
Now, we have M = e-rt                            
ð t = (-1/r) ln(M) 
 
To calculate interval [t1 , t2]      [APPENDIX 10]   



t1 = (-1/r) . ln (0.0167) 
ð t1 = 33837 years 

 
t2 = (-1/r) . ln (0.0132) 
ð t2 = 35777 years 

 
Hence we get a 95% confidence interval of the time [33837 , 35777] 
 
We find a time period dating from when the individual passed away to when these 
readings were taken. If we consider these readings to have been taken in 2010 we get  
 
2010 – 33837 = - 31827 years 
2010 – 35777 = - 33767 years 
 
So we get that the individual died between 31827 BC – 33767 BC 
 
Assuming that the average life span of a human in that era was 35 years  
So, 
 
He was born between 31792 BC – 33732 BC and died between 31827 BC – 33767 BC 

 
 

ALTERNATIVELY (using error propagation) 
 
      We are given a data containing five measurements of M. Using that data, we first                                                                                           
h.   calculate the mean and standard deviation of the data. 

  
We have N = Sample size = 5, and Xi = different values of M from the sample 
 
In order to calculate the mean we use the expression 
XA = 1

B
Σ(Xi) 

 
ð XA	=	0.0149     [APPENDIX 6]   

 
Using an unbiased estimate for the true variance of X, the sample variance is given by 
Var(X)	≈		σ2 = 1

B&1
[	F	∑ X0B

0C1 H − NXAD]     [APPENDIX 7]   
 
The standard deviation of the sample is given by 

SD(XA) = JE3

B
 

 
ð SD(XA) = 8.9028 x 10-4     [APPENDIX 8]   

 
Now using method of error propagation, we calculate Expectation, Variance and 
Standard Deviation of ‘t’ 



 
We have M = e-rt                            
ð t = (-1/r) ln(M) 
[APPENDIX 18] 

Expectation_t = 34750 years 
Variance_t = 1213300 years2 

StandardDeviation_t = 1101.5 years 

  
The 95% confidence interval calculated on Matlab gives us [APPENDIX 19] 

t1 = 33785 years 
t2 = 35716 years 

 
Hence we get a 95% confidence interval of the time [33785 , 35716] 
 
We find a time period dating from when the individual passed away to when these 
readings were taken. If we consider these readings to have been taken in 2010 we get  
 
2010 – 33785 = -31775 years 
2010 – 35716 = -33706 years 
 
So we get that the individual died between 31775 BC – 33706 BC 
 
Assuming that the average life span of a human in that era was 35 years  
So,  
 
He was born between 31740 BC – 33671 BC and died between 31775 BC – 33706 BC 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 



MODEL 3: 
PART 1. 
 
(a) In order to find the likeliness of a flight being early rather than late we take an average 

of their probabilities of being early by 22 and 7 mins respectively. 
The data calculated is shown in the table below 
  

% Early 

   Destination City Airline 22 min 7 min Mean Early %  Outcome 

BEIJING AIR CHINA 14.03 32.04 46.07 44.93 
 Late BEIJING BRITISH AIRWAYS PLC 22.32 21.47 43.79 

BEIJING DAXING INT 
AIRPORT 

BRITISH AIRWAYS PLC 9.3 21.71 31.01  Late 

GUANGZHOU BAIYUN 
INT 

CHINA SOUTHERN 24.03 43.49 67.52 Early 

    CHANGSHA 
HUANGHUA INT 

AIRPORT 

HAINAN AIRLINES 
12.59 39.12 51.71 Early 

CHENGDU AIR CHINA 11.74 31.3 43.04 Late 

QINGDAO BEIJING CAPITAL 
AIRLINES 30.08 42.37 72.45 Early 

SHANGHAI (PU DONG) BRITISH AIRWAYS PLC 9.12 31.91 41.03 

41.49 
 Late SHANGHAI (PU DONG) CHINA EASTERN 

AIRLINES 5.8 30.39 36.19 

SHANGHAI (PU DONG) VIRGIN ATLANTIC LTD 13.32 33.93 47.25 

SHENZHEN 
(HUANGTIAN) 

SHENZHEN AIRLINES 7.57 26.5 34.07  Late 

TIANJIN TIANJIN AIRLINES 12.24 32.78 45.02 Late 

WUHAN TIANHE INT CHINA SOUTHERN 17.31 42.63 59.94 Early 

ZHENGZHOU XINZHENG CHINA SOUTHERN 4 36 40 Late 

 
The airports for which the probability of being early is greater than 50% will have flights 
from Heathrow more likely to be early than late. 
 
From the table we can observe that at the following airports flights arriving from 
Heathrow are more likely to be early than late 
 

ð GUANGZHOU BAIYUN INT 
ð CHANGSHA HUANGHUA INT AIRPORT 
ð QINGDAO 
ð WUHAN TIANHE INT 

 



 
(b) The Expectation and the Standard Deviations were calculated for the three flights 

arriving at Shanghai Pu-Dong Airport as shown in the tables for each. 
 
The percentage probabilities were divided by 100 to get the column for [f] and the time 
by which the flights arrived were taken to be negative whereas the time by which they 
were late were taken to be positive. The values of time together gave the column [x]. 
 
To calculate the expectation 
First the column [fx] was calculated  
The expectation [E] of a probability distribution is given by 
E = Σ [fx] 
 
To calculate the standard deviation 
First a column corresponding to [x-μ]2 is calculated where μ is the mean (Expectation[E]) 
Then a column corresponding to f.[x-μ]2 is calculated 
The variance σ2 of a probability distribution is calculated using 
σ2 = Σ f.[x-μ]2 

The standard deviation is given by σ (√σ2) 
 

	
	
	
	
	
	
	

Destination	City	

	
	
	
	
	
	
	
	
	

SHANGHAI	(PU	DONG)	 	     
Airline	 BRITISH	AIRWAYS	PLC	 	     

       
Time Delayed (mins) [x] Percentage Late/Early  [f] [fx] [x-µ]  [x-µ]^2 [f].[x-µ]^2 

-22	 9.12	 0.0912 -2.0064 -34.3066 1176.9428 107.337184 
-7	 31.91	 0.3191 -2.2337 -19.3066 372.744804 118.942867 
8	 36.97	 0.3697 2.9576 -4.3066 18.5468036 6.85675328 
23	 10.8	 0.108 2.484 10.6934 114.348804 12.3496708 
46	 6.54	 0.0654 3.0084 33.6934 1135.2452 74.2450363 
91	 2.97	 0.0297 2.7027 78.6934 6192.6512 183.921741 
151	 0.5	 0.005 0.755 138.6934 19235.8592 96.179296 
271	 0.4	 0.004 1.084 258.6934 66922.2752 267.689101 
450	 0.79	 0.0079 3.555 437.6934 191575.512 1513.44655 

  Σ [fx] = 12.3066  Σ f.[x-μ]2 =  2380.9682 

       
Expectation [E]/µ =  12.3066 minutes      
       
Standard Deviation = 48.79516571 minutes      

 
  



 
 
 
 
 
 

 
 

	
	
	

Destination	City	

	
	
	
	
										SHANGHAI	(PU	DONG)	 	     

Airline	 CHINA	EASTERN	AIRLINES	 	     
       
Time Delayed (mins) [x] Percentage Late/Early  [f] [fx] [x-μ] [x- μ]^2 [f].[x- μ]^2 

-22	 5.8	 0.058 -1.276 -37.7642 1426.134802 82.7158185 
-7	 30.39	 0.3039 -2.1273 -22.7642 518.2088016 157.4836548 
8	 30.8	 0.308 2.464 -7.7642 60.28280164 18.56710291 
23	 14.09	 0.1409 3.2407 7.2358 52.35680164 7.377073351 
46	 12.02	 0.1202 5.5292 30.2358 914.2036016 109.8872729 
91	 5.66	 0.0566 5.1506 75.2358 5660.425602 320.3800891 
151	 0.69	 0.0069 1.0419 135.2358 18288.7216 126.1921791 
271	 0.41	 0.0041 1.1111 255.2358 65145.3136 267.0957858 
450	 0.14	 0.0014 0.63 434.2358 188560.73 263.985022 

  Σ [fx] = 15.7642  Σ f.[x-μ]2 = 1353.683998 

       
Expectation [E]/µ  =  15.7642 minutes      

       
Standard Deviation = 36.79244485 minutes      

Destination	City	 SHANGHAI	(PU	DONG)	 	     
Airline	 VIRGIN	ATLANTIC	LTD	 	     

       
Time Delayed (mins) [x] Percentage Late/Early  [f] [fx] [x-µ] [x-	µ]^2 [f].[x-	µ]^2 

-22	 13.32	 0.1332 -2.9304 -30.041 902.461681 120.207896 
-7	 33.93	 0.3393 -2.3751 -15.041 226.231681 76.7604094 
8	 33.52	 0.3352 2.6816 -0.041 0.001681 0.00056347 
23	 8.65	 0.0865 1.9895 14.959 223.771681 19.3562504 
46	 6.59	 0.0659 3.0314 37.959 1440.88568 94.9543664 
91	 2.47	 0.0247 2.2477 82.959 6882.19568 169.990233 
151	 0.96	 0.0096 1.4496 142.959 20437.2757 196.197847 
271	 0.27	 0.0027 0.7317 262.959 69147.4357 186.698076 
450	 0.27	 0.0027 1.215 441.959 195327.758 527.384946 

  Σ [fx] = 8.041  Σ f.[x-μ]2 = 1391.55059 

       
Expectation [E]/µ	 =  8.041 minutes       

       
Standard Deviation =  37.30349297 minutes      



 
According to the data calculated above, it is evident from the values of the expectations 
calculated that the Airline Virgin Atlantic is the most punctual with an expectation to be 
late by 8.041 minutes, followed by the Airline British Airways which is expected to be 
late by 12.3066 minutes. The airline China Eastern Airlines is expected to be the least 
punctual with and expectation to be late by 15.7642 minutes. 
 
Ranking in order of punctuality  

1. Virgin Atlantic LTD 
2. British Airways PLC 
3. China Eastern Airlines  

 
 

However, these predictions, as is evident from the large values of standard deviation 
calculated from the data, are not very reliable. 
 
For instance, the expectation of British airways to be late is by 12.3066 minutes but the 
standard deviation of this value is about 48.8 minutes which means that the airline can 
vary between being late by 61.1066 minutes (48.8 + 12.3066) and being early by 
36.4934 minutes (12.3066 - 48.8) 
 
Similarly, China Eastern can vary between being late 52.5642 minutes (15.7642 + 36.8) 
and being early by 21.0358 minutes (15.7642 - 36.8). 
 
And Virgin Atlantic can vary between being late 45.341 minutes (8.041 + 37.3) and 
being early by 29.259 minutes (8.041 - 37.3). 

 
 

PART 2. 
 
(a) Using passenger analysis data of the Heathrow airport from the internet, it was 

observed that the number of transit passengers comprised of 34% of the total number 
of passengers at the airport. [2] 

 
Here we make a mathematical assumption that the overseas transit passengers 
comprise of 34% of the total overseas passengers and the home transit passengers 
comprise of 34% of the total home passengers. 
 
 
 

Airline Expectation [E]/μ 
(minutes) 

Standard Deviation 
(minutes) 

British Airways PLC 12.3066 48.795 

China Eastern Airlines 15.7642 36.792 

Virgin Atlantic LTD 8.041 37.303 



FOR OVERSEAS 
We use table 3 to calculate the total overseas passengers. This is done by taken the sum 
of the total passengers from Non-EU Europe, Africa, North America, Latin America, 
Middle East and Asia/Pacific for each month – which gives us the total overseas 
passengers for each month of the year 2019. 
 
In order to get random variable X3-os , we first  multiply the total overseas passengers for 
each month by 0.34 (34%) and then divide it by the number of days in that month (31, 
30 or 28) and then divide it by no. of hours in a day i.e. 24 to get the ‘no. of overseas 
transit passengers per hour’ 
 
The mean of random variable X3-os is calculated using the formula 
µ = (1/N) Σ X3-os 
where N=12 (sample size-12months) 
 
We the subtract the mean from each element of random variable X3-os and then square 
it. 
The variance is calculated using the formula 
Var(X) = σ2 = (1/N)	Σ (X3-os – µ)2 

 

[APPENDIX 11] 

Month Total Overseas OS Transit Passengers (per hour) [X3-os] [X3-os – μ] [X3-os – μ]2 

Jan 37,84,069 1729.278844 -157.592 24835.24 

Feb 33,02,342 1670.827798 -216.0431 46674.6 

Mar 39,18,856 1790.875054 -95.9958 9215.194 

Apr 40,59,393 1916.935583 30.064729 903.8879 

May 39,28,539 1795.300081 -91.57077 8385.207 

Jun 42,78,749 2020.520361 133.64951 17862.19 

Jul 46,17,842 2110.30414 223.43329 49922.43 

Aug 46,23,740 2112.999462 226.12861 51134.15 

Sept 40,54,959 1914.84175 27.970896 782.371 

Oct 42,11,975 1924.827285 37.956431 1440.691 

Nov 37,28,882 1760.860944 -126.0099 15878.5 

Dec 41,46,441 1894.878952 8.0080976 64.12963 

 Σ X3-os =  22642.45025 Σ (X3-os – µ)2 = 227098.6 

     

     



Mean (µ) 1886.870854 hour-1    

Variance 
(σ2) 

18924.88267 hour-2    

 
FOR HOME 
We use table 3 to calculate the total home passengers. This is done by taken the sum of 
the total passengers from UK and EU for each month – which gives us the total home 
passengers for each month of the year 2019. 
 
In order to get random variable X3-H , we first  multiply the total home passengers for 
each month by 0.34 (34%) and then divide it by the number of days in that month (31, 
30 or 28) and then divide it by no. of hours in a day i.e. 24 to get the ‘no. of home transit 
passengers per hour’ 
 
The mean of random variable X3-H is calculated using the formula 
µ = (1/N) Σ X3-H 
where N=12 (sample size-12months) 
 
We the subtract the mean from each element of random variable X3-H and then square 
it. 
The variance is calculated using the formula 
Var(X) = σ2 = (1/N)	Σ (X3-H – µ)2 

         [APPENDIX 12] 

Month Total Home H Transit Passengers (per hour) [ X3-H ] [ X3-H – µ ] [ X3-H – µ ]2 

Jan 21,43,474 979.5445699 -273.34891 74719.62502 

Feb 21,79,946 1102.948869 -149.94461 22483.38545 

Mar 26,08,633 1192.117231 -60.776246 3693.752056 

Apr 27,38,819 1293.331194 40.437717 1635.208992 

May 28,40,364 1298.015806 45.122329 2036.024615 

Jun 29,67,848 1401.483778 148.5903 22079.07749 

Jul 31,36,297 1433.254005 180.36053 32529.9202 

Aug 30,56,587 1396.827392 143.93392 20716.97202 

Sep 27,22,156 1285.462556 32.569079 1060.744878 

Oct 28,52,804 1303.700753 50.807276 2581.379263 

Nov 25,04,919 1182.878417 -70.01506 4902.108673 

Dec 25,49,638 1165.157151 -87.736326 7697.662981 

 Σ X3-H = 15034.72172 Σ (X3-H – µ)2 = 196135.8616 



 
 
Final Result 
 
Since a rate belonging in (persons/hour) cannot be in decimals (i.e., we cannot have a 
decimal value of a person) we round the values of mean and variance to the nearest 
whole number. 
 Mean (µ) 

[hour-1] 
Variance (σ2) 
[hour-2] 

X3-os 1887 (µX3-os) 18925 (σX3-os
2) 

 
X3-H 1253 (µX3-H) 16345 (σX3-H2) 

 
 
 

 
(b) To determine the number of gates that need to be open in order to ensure the queues 

of passengers waiting to go through passport control does not increase with time.  
 
#B
#$
= X1 − XD − X2                             ....(i) 

 
For the queues of passengers waiting to go through passport control to not increase 
with time, 

dN
dt ≤ 0 

 
However, in order to obtain a limiting value i.e. the maximum number of gates that need 
to stay open so that the queues of passengers does not increase with time we assume 
that,  

dN
dt = 0 

Plugging this value into equation (i) we have 
 
X1 – X2 – X3 = 0 

ð X1 – X3 = X2 
 
      Separating this equation for overseas and home passengers we have 

ð X1-os  – X3-os  = X2-os         and   X1-H  – X3-H  = X2-H                         ....(ii) 
 

        Where X1 = X1-os  + X1-H  , X2 = X2-os  + X2-H  and X3 = X3-os  + X3-H   
 

 

Mean (µ) 
1252.893477 hour-1 

   
Variance 
(σ2) 16344.65514 hour-2    



      We also have  
      X2 = nos ros + nH rH 

ð X2-os  = nos ros  and  X2-H  = nH rH 
 

      Plugging these values into equations (ii) 
 
      For overseas 
      X1-os  – X3-os  = nos ros   

ð nos = (X1-os  – X3-os) / ros                          ....(iii) 
 

      For home 
      X1-H  – X3-H  = nH rH   

ð nH = (X1-H  – X3-H) / rH                               ....(iv) 
 
 
     In order to calculate the number of gates open for overseas and home passengers i.e.,           
. .  nos and nH we need to make assumptions for the values for ros and rH which is the number 
..   of people that pass through a till per hour. 
 
     From personal experience, it takes approximately 60 seconds for an overseas passenger   
....and approximately 30 seconds for a home passenger to pass through a till. 
 

ð ros = 3600/60 = 60 hour-1         and     rH = 3600/30 = 120 hour-1 
 

     For the values of X3-os and  X3-H  we use their means as calculated in (a) 
     And use mean values ofX1-os  

[APPENDIX 13] and X1-H 
[APPENDIX 14] 

      
      
     
 
 
 
 
 
 
 
     
 
 
 
 Now we plug these values into equations we get           [APPENDIX 15]    
 

ð nos = 61.05 gates              and               nH = 20.2667 gates 
 
Since the number of gates can’t be a decimal value  
 

ð nos = 62 gates              and               nH = 21 gates 

As we use the means/expectations of X1-os, X3-os,  X1-H, and  X3-H  we apply the linear 
property of expectation which states that 
E[X1 + X2 +...+ Xn] = E[X1] + E[X2] +...+ E[X3] 
E[aX1] = a E[X1] 
 
Also, from the assumptions made in (a) we have X3-os = 0.34 X1-os and X3-H  = 0.34 X1-H 

ð μ(X1-os - X3-os) = μ(0.66 X1-os) = (0.66) μX1-os = 3633  hour-1  [APPENDIX 16] 
Similarly μ(X1-H - X3-H) = (0.66) μX1-H = 2432  hour-1 [APPENDIX 16] 
 
So, we can modify equations (iii) and (iv) 
nos = (0.66) μX1-os / ros                and          nH = (0.66) μX1-H / rH                                
 
 



 
 
 
 

 
        

 

 

 

 

 

 

 

 

 

 

Hence if we include the standard deviations in the values calculated for nos and nH  

 
ð nos = 62 ±	5 gates    and        nH = 21 ± 3 gates 

 
 
 

(c)  We are required to predict how passport control queues change as a function of the 
number and type of tills open  

Plugging in the value of X2 = nos ros + nH rH into equation (i) we get 
#B
#$
= X1 − (nIJ	rIJ 	+ 	nK	rK) − X2                              

ð #B
#$
= X1 − nIJ	rIJ −	nK	rK − X2                              

 
       To determine how the rate of change of passengers queuing with respect to time           
......changes as a function of the number of rows we separate this equation into distinct 
......equations for overseas and home passengers. 

ð 𝐝𝐍𝐨𝐬
𝐝𝐭

= 𝐗𝟏&𝐨𝐬 − 𝐧𝐨𝐬	𝐫𝐨𝐬 − 𝐗𝟑&𝐨𝐬         and  𝐝𝐍𝐇
𝐝𝐭

= 𝐗𝟏&𝐇 − 𝐧𝐇	𝐫𝐇 − 𝐗𝟑&𝐇          
 

       We plot these two equations with respect to the number of tills open 
        In order to get a broad range for possible value of the number of tills we chose it to be 
........an array of [0:100]    [APPENDIX 20]  

Since we calculated the values of n using mean values, it is essential to calculate the 
variance in order to adapt to this variation to of people through time [Appendix 17] 
 
Var(nos) = Var( (0.66) μX1-os / ros) 

ð Var(nos) = (0.66/ros)2 Var(μX1-os)                       [using Var(aX) = a2 Var(X)] 
ð Var(nos) = 19.8089  

σ (nos) = √ Var(nos) = 4.45 
ð σ (nos) = 4.45 ~ 5 (gates can’t have decimal value) 

 
Var(nH) = Var( (0.66) μX1-H / rH) 

ð Var(nH) = (0.66/rH)2 Var(μX1-H) 
ð Var(nH) = 4.2770  

σ (nH) = √ Var(nH) = 2.068 
ð σ (nH) = 2.068 ~ 3 (gates can’t have decimal value) 

 



 

 
After plotting the graph a number of observations were made 
 
At dN/dt = 0 
We start by observing where the lines of the graphs meet the x axis. These are the points 
where the Rate of change of passengers queuing with time is 0, i.e., the number of passengers 
queuing is constant. In such a condition the number of tills open for overseas is 61.05~62 and 
the number of tills open for home is 20.2667~21. 

 
At dN/dt > 0 – queues get longer 
This region in the graph is represented by the region above the line y =0. We can 
observe that as the value of dN/dt approaches 0, the no. of gates increases linearly. 
It can also be observed that no. of gates open increase more for overseas passengers 
than for home passengers as is evident from the steeper slope of home passengers 
in comparison to the overseas passengers. 
 
At dN/dt < 0 – queues get shorter 
This region in the graph is represented by the region below the line y =0. We can 
observe that as the value of dN/dt decreases from 0, the no. of gates increases 
linearly. It can also be observed that no. of gates open increase more for overseas 
passengers than for home passengers. This is evident from the fact that as dN/dt 
decreases from 0 to -2000 (dotted line on graph), the no. of gates for overseas 



passengers increases from about 60 to 95 (increase by 35 gates) whereas for home 
passengers it increases from about 20 to 35 (increase by 15 gates). 
 
UNCERTAINITY OF MODEL 
Since here we are considering random variables X1, X2 and X3 in this model there is a 
level of uncertainty, it is important to consider the error propagation in the 
calculations. These errors must be propagated onto the value of the number of gates 
to opened calculated. This helps in estimating probable ‘worst case scenarios’ so that 
suitable adjustments can be made.  
 
Furthermore, the model is based on educated assumptions made in order to 
estimate the values of certain constants (eg, ros and rH). The accuracy of these values 
is questionable which makes the model uncertain. Also these values are not 
constants in the real world. 
 
Also, we have only studied the data of passengers at the airport for one year and 
there is no set formula that helps us predict the number of passengers at the airport 
at any given day making these values absolutely random. Hence to come up with a 
completely certain model of such unpredictable variables is improbable. 

 
From the data that the total transit passengers is 34% of the total passengers, we 
made an assumption that the total overseas and home transit passengers would also 
be 34% of the total overseas and home passengers respectively. Since this was a 
personal assumption and taken from concrete data it make also contribute towards 
the uncertainty of the model. 
 
AIRPORT STRATEGY  
The airport needs to opt for a strategy to optimize the number of gates open in 
accordance with the number of passengers in the queue. The number of gates open 
shouldn’t be too less as it may lead to a pile up of people in the queues and if the 
number of gates open are more than necessary it would lead to a waste of the 
resources of the airport. 

 
It is evident from the graphs that the number of people queuing is directly 
proportional to the number of gates.  
We have assumed ros = 60 hr-1 and rH = 120 hr-1 
We can make an approximate relationship between N and n using r such that 

 
Nos = 60 nos      and  NH = 120 nH      

 
According to this relationship if the number of people queueing increases by say ∆N , 
the number of tills should increase by (1/60) ∆N for overseas and (1/120) ∆N for 
home. 

 
 
 



APPENDIX: 
 

1. Start by defining the values of variables  

Incoming flow rate of water (r_i) 

Leaving flow rate of water (r_o) 

Concentration of incoming pollutants (c_i) 

Volume of water in the lake  

V = 13.08*10^6 

V = 13080000 

r_i = 45000 

r_i = 45000 

r_o = r_i 

r_o = 45000 

c_i = 450 

c_i = 450 

t= 0:2000 

t = 1×2001 
     0     1     2     3     4     5     6     7     8     9    10    11    
12 ⋯ 

Now, plotting concentration of pollutants against time in order to determine the time (t) at which 
the damage becomes irreversible  

c_o = (-(c_i)*V*exp(-r_o*t/V) + c_i*V)/V 

c_o = 1×2001 
         0    1.5455    3.0857    4.6206    6.1502    7.6746    9.1938 ⋯ 

plot(c_o,"R") 
hold on 

We now need to find the time when the concentration reached 331 g/m^3 

Let this be the critical concentration (c_x) and the time corresponding be t_x 

c_x =331 

c_x = 331 

t_x = (-V/r_o)*(log(1-(c_x/c_i))) 



t_x = 386.6227 
 
 
2.  plotting the graph 

plot(t_x, c_x, "ro") 
xlabel ('time (hours)') 
ylabel ('concentration of pollutants in the lake (g/m^3)') 
hold on  

 

 

3. We need to find the concentration that is 95% of  the steady state concentration 

Since this the concentration at time=tau is can be called c_tau 

c_tau = 0.95*c_i 

c_tau = 427.5000 

We found the equation for tau 

t = 0:2000 

t = 1×2001 
     0     1     2     3     4     5     6     7     8     9    10    11    
12 ⋯ 

tau = (-V/r_o)*(log(1-(c_tau/c_i))) 

tau = 870.7595 

plot (tau, c_tau , "bo") 
hold off 



 
 

 

4. New initial concentration of the lake 

c_L = 213 

c_L = 213 

Now, defining concentration of pollutant in the lake when there is now inflow of pollutants in the 
lake 

c_o_new = c_L*exp((-r_o/V)*t) 

c_o_new = 1×2001 
  213.0000  212.2685  211.5394  210.8129  210.0889  209.3673  208.6483 ⋯ 

plot (t,c_o_new,'green') 
hold on 

Now we define the final desired concentration of the lake of 5 g/m^3 

c_final = 5 

c_final = 5 



Now finding the time to eliminate pollutants from the lake 

t_eliminate = (-V/r_o)*log(c_final/c_L) 

t_eliminate = 1.0905e+03 

plot (t_eliminate , c_final , "go") 
xlabel ('time (hours)') 
ylabel ('concentration of pollutants in the lake (g/m^3)') 
hold off 

 
5. Checking whether the value of y(t)/V is less that 5 for t_eliminate 

Finalconcoflakei = (c_L)*exp(-r_o*(t_eliminate)/V)  

Finalconcoflakei = 5.0000 

So in order to get final conc. less than 5 we increase t_eliminate by a small amount 

Finalconcoflakeii = (c_L)*exp(-r_o*(1090.55)/V)  

Finalconcoflakeii = 4.9998 
 
 

 



6. We start by defining the different values of M from the sample provided in Table 1 

M_1 = 0.0120  

M_1 = 0.0120 

M_2 = 0.0140 

M_2 = 0.0140 

M_3 = 0.0167 

M_3 = 0.0167 

M_4 = 0.0167 

M_4 = 0.0167 

M_5 = 0.0153 

M_5 = 0.0153 

N = 5 

N = 5 

r = 1.2097*10^(-4) 

r = 1.2097e-04 

Now we find the Mean of the values defined above 

Mean = (M_1+M_2+M_3+M_4+M_5)/N 

Mean = 0.0149 

7. Now we calculate the unbiased variance of the data  

Variance = (1/(N-1))*(((M_1)^2+(M_2)^2+(M_3)^2+(M_4)^2+(M_5)^2)-(N*Mean^2)) 

Variance = 3.9630e-06 

8. We now calculate the standard deviation 

StandardDeviation = sqrt(Variance/N) 

StandardDeviation = 8.9028e-04 

9. We now calculate the 95% confidence interval 

n_inv = norminv (0.975,0,1) 

n_inv = 1.9600 

X_dash_1 = Mean + (((n_inv)*(StandardDeviation))) 

X_dash_1 = 0.0167 



X_dash_2 = Mean - (((n_inv)*(StandardDeviation))) 

X_dash_2 = 0.0132 

10. Now we convert this interval in M using the equation t = (-1/r)*log(M) to an interval in t 

t_dash_1 = (-1/r)*log(X_dash_1) 

t_dash_1 = 3.3837e+04 

t_dash_2 = (-1/r)*log(X_dash_2) 

t_dash_2 = 3.5777e+04 

Thus the interval is 33837< t < 35777 

11. 

 
 

12. 

 

 



13. Excel Table to find mean and variance of X1-os 

 

14. Excel Table to find mean and variance of X1-H 

 

 

15. To determine the number of gates that need to be open in order to ensure the queues of 
passengers waiting to go through passport control does not increase with time   
     

We start by defining the values for the total passengers (overseas) 

Xos_1 = 5550 

Xos_1 = 5550 

 the total passengers (home) 

(1/N)Σ x 

(1/N)Σ (x-u)2 

(1/N)Σ x 

(1/N)Σ (x-u)2 

x 

x 

(u) 

Var(μX1-os)                        

Var(μX1-H)                        

μX1-os                      

μX1-H                      



Xh_1 = 3685 

Xh_1 = 3685 

the transit passengers (overseas) 

Xos_3 = 1887 

Xos_3 = 1887 

the transit passengers (home) 

Xh_3 = 1253 

Xh_3 = 1253 

Now, defining rate at  which overseas passengers pass through the gates per hour (r_os) 

Assuming each passenger takes 1 minute (60seconds) 

r_os = 60 

r_os = 60 

Defining rate at which home passengers pass through the gates per hour (r_h) 

Assuming each passenger takes 30 seconds 

r_h = 120 

r_h = 120 

we have n_os as the no. of gates open for overseas passengers and n_h as the number of gates 
open for home passengers  

n_os = (Xos_1 - Xos_3)/r_os 

n_os = 61.0500 

n_h = (Xh_1 -Xh_3)/r_h 

n_h = 20.2667 
 
 
16. Calculations for the values of  

xos = 0.66*Xos_1 

xos = 3663 

xh = 0.66*Xh_1 

xh = 2.4321e+03 

 

17. Now we calculate the variance of the no. of gates open 



Var_uX1os = 163710.0577 

Var_uX1os = 1.6371e+05 

Var_nos = (0.66/r_os)^2*(Var_uX1os) 

Var_nos = 19.8089 

 
Var_uX1H = 141389.7503 

Var_uX1H = 1.4139e+05 

Var_nh = (0.66/r_h)^2*(Var_uX1H) 

Var_nh = 4.2770 

18. We first determine the mean time 

E_t = -log(Mean)/r 

E_t = 3.4750e+04 
 
We then determine the variance of time 

Var_t = Variance*(-1/(Mean*r))^2 

Var_t = 1.2133e+06 
 
We then determine the standard deviation  

SD_t = sqrt(Var_t) 

SD_t = 1.1015e+03 

 

19. Now we calculate the 95% confidence interval  

a = 1-0.95 

a = 0.0500 

t_1 = norminv((a/2),E_t, SD_t/sqrt(N)) 

t_1 = 3.3785e+04 

t_2 = norminv((1-a/2),E_t, SD_t/sqrt(N)) 

t_2 = 3.5716e+04 

 

 

 



20. We want to predict how passport control queues change as a function of the number and 
types of tills open 

The rate at which the passengers pass through the gate is defined for overseas and home as 
r_os and r_h respectively 

The rate of change of passengers queuing with respect to time is defined as the following for 

Overseas 

dNosdt = Xos_1 - (r_os*n_os) - Xos_3 

dNosdt = 1×2 
        3663       -2337 

Home 

dNhdt = Xh_1 - (r_h*n_h) - Xh_3 

dNhdt = 1×2 
        2432       -9568 

We range the number of tills open as an array as follows in order to plot the rate of change of 
passengers queuing with respect to time as a function of number of tills open 

n_os = [0 100] 

n_os = 1×2 
     0   100 

n_h = [0 100] 

n_h = 1×2 
     0   100 

In order to compare we plot both the functions on the same graph 

plot (n_os,dNosdt,'r') 
hold on 
plot (n_h,dNhdt,'b') 
xlim([0.0 100.0]) 
ylim([-10000 4000]) 
title ('Impact of the number of tills on the rate of change of passengers 
queuing') 
xlabel ('Number of tills open') 
ylabel ('Rate of change of passengers queuing with time') 
 
legend('Overseas Passengers','Home Passengers') 

To show the points at which the slopes of the graphs meet the x axis we plot a line y=0  

yline(0) 

We know from the assumption made in part (b) that at the values of n calculated in part (b) the 
value of dN/dt =0 



Hence, in order to mark the regions at which dN/dt are positive and negative we plot lines parallel 
to the y axis and passing through the values of n_os and n_h found in part (b) 

xline (61.05) 
xline (20.2667) 
 
xlim([0.0 100.0]) 
ylim([-10000 4000]) 
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